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SUMMARY 

The theory of spreading of a sample peak in a long straight open tube is 
known. However, when the tube becomes shorter than 30 theoretical plates, the 
eluted peak becomes non-gaussian and the theory for long tubes does not apply. This 
is the case for connecting tubes. injection loops and detector flow cells in liquid 
chromatographic (LC) systems. In earlier work, we studied the theory of this case 
using a computer model combining Poiseuille flow with diffusion, obtaining unexpec- 
ted results about how samples wash out of short tubes. This work extends that study 
to obtain the peak shapes and bandwidths eluted from straight open tubes ranging 
from 0.01 to 30 plates in length. 

An empirical expression was found for peak width which fits the results of the 
computer model to within 472 over this entire range. Below 3 plates, the normalized 
peak width is approximated by a constant times the inverse fourth root of normalized 
tube length in plates. It becomes as small as a quarter of the value predicted by the 
long tube theory for 0.01 plates_ Experimental measurements on short tubes agree 
approximately with the computer model when diffusion is the only cause of radial 
mixing. An expression was derived which determines whether a tube is sufficiently 
straight so that secondary flow is unimportant compared with diffusion as a cause of 
radial mixing. Measurements on curved tubes are consistent with the expression. The 
conditions under which measurements of peak spreading in an open tube can be used 
to obtain the diffusivity of an LC sample are discussed. 

A consequence of these results is that LC systems can be designed with sub- 
stantially less bandwidth contribution from extra-column components than would be 
predicted using the long tube theory. Another consequence is that variances con- 
tributed by consecutive segments of short open tubes are not additive unless there is 
complete radial mixing at the connections between segments. 

INTRODUCTION 

The theory of dispersion of a sample peak injected into Poiseuille flow in a long 
straight tube is well known from the works of Taylor’ and Golay’. When the tube is 
long there is ample time for radial diffusion to average each sample molecule’s for- 
ward progress over the parabolic velocity distribution in the tube. The eluted peaks 
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are gaussian in shape and the theory is in excellent agreement with experiments. 
However, when the tube is short, or the diffusivity of the sample is low, or the 

flow-rate is high enough so that there is insufficient time for velocity averaging, the 
peak eluted from a small injection becomes markedly non-gaussian, and the theory 
for long tubes does not apply. This typically occurs for the connecting tubes, injection 
loops, and detector flow cells of liquid chromatography (LC) systems. 

Gill and Ananthakrishnan3 solved the convective-diffusion equations in a short 
tube and found that the peaks at the end of the tube may have double maximums. 
Golay and Atwood4 studied this early phase of dispersion of the sample using a 
computer model combining diffusion and Poisseulle flow in an open tube with no 
retention_ It was found that for the conditions typically encountered in LC systems, 
the shape of the peak eluted from the tube as a function of time depended only on the 
normalized length of the tube in theoretical plates, treating the tube as an open 
tubular column with zero retention’. The bandwidth of the eluted peak was propor- 
tional to tube volume, and when normalized by tube volume depended only on the 
normalized tube length in plates_ It was found, surprisingly, that the washing out of 
the sample in the slowly moving layer near the tube wall occurred as a hump at the 
rear of an otherwise rectangular distribution along the length of the tube. This hump 
was shown by the computer model to cause a peculiar doubly curved shape in the 
peaks eluted from tubes shorter than 30 theoretical plates. Computer-calculated 
shapes of six peaks from tubes ranging from 30 down to 0.1 theoretical plates in 
normalized length were published, but no analysis of their bandwidths or variances 
was presented_ Maycock et ~1.~ solved the shape of peaks from tubes in the same 
range of normalized lengths by an entirely different numerical method and obtained 
results in general agreement. 

This paper extends the earlier work as follows. Because some LC components 
such as detector flow cells may typically be as little as 0.01 theoretical plates in 
normalized length, the computer model was revised so that the calculation could be 
extended to tubes as short as this. Bandwidth and other properties of the peak shapes 
were calculated, and the way these properties vary with normalized length of the tube 
was studied. The purpose was to characterize these highly non-gaussian peaks so that 
more accurate estimates could be made of the bandwidth contributions of the com- 
ponents that produce them. 

It was found that as the tube becomes longer than 3 plates, the normalized 
peak bandwidth, expressed as standard deviation, cr, divided by the tube volume, VT 
becomes asymptotic to the inverse square root of normalized tube length as predicted 
by the theory for long tubes le2 But as the tube becomes shorter than 3 plates, the . 
normalized peak bandwidth becomes significantly smaller than predicted by the long 
tube theory. At 0.01 plates it is only one fourth as large. 

A consequence of this result is that it appears possible to design LC com- 
ponents that make significantly less contribution to extra-column bandwidth than 
would be predicted using the long tube theory only. 

Another consequence of the result is that the variances contributed by con- 
secutive segments of short open tubes are not additive unless there is complete radial 
mixing at the connection between the segments_ 

Several experiments are described which tend to verify the correctness of the 
computed results, yet show the limits of their applicability. The principal limitation is 
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that in the theory for laminar tlow in straight tubes, diffusion is the only cause of 
radial mixing. Therefore, any experiments to be governed by such a theory must be 
free of the radial mixing effects of secondary flow such as is caused by curved tubing 
paths or abrupt changes in cross section. It was found necessary in the experiments to 
keep tubes surprisingly straight to get results in agreement with the theory, except at 
very low flow-rates. A simple expression was derived from the work of Golay which 
determines in advance whether a tube is sufficiently straight so that secondary flow is 
unimportant compared with diffusion as a cause of radial mixing. Measurements of 
peak dispersion made in a curved tube are consistent with this expression. Many 
other predictions of the theory remain to be tested experimentally, however. 

THEORY 

A straight open tube can be treated as an open tubular column without reten- 
tion’. It has an optimum velocity at which the height of a theoretical plate is min- 
imum. Multiplying the expression for the optimum velocity by the area of the tube’s 
cross-section gives the corresponding optimum flow-rate, F,,, as 

F opt = JZ nDr, il) 

where D is diffusivity of the sample in the mobile phase and r,, is the inside radius of the 
tube. For a typical sample with D = 10e5 cm2/scc in a tube with 0.009 cm radius. Fopl 
z 2 - 10M6 cm3/scc, or roughly IO-& ml/min. Thus. the flow-rates in typical LC 
systems are of the order of 1000 to 10,000 times the optimum flow-rates in the 
connecting tubes. Even for detector cells with 0.025 cm radius, Fop* z 3 - IO-’ 
ml/min, so that a flow-rate of 10 &min. as is typically used with microbore columnss 
is about 30 times Fopr. Under these conditions, except for a brief instant at the start. 
convection due to Poiseuille flow is always far more important than iongitudinal 
diffusion as the cause of axial dispersion of the sample and we may use only the 
dynamic diffusion term of the expression for plate height, /I, in the tube. Expressed in 
terms of flow-rate, F, it is 

11 = F/24 nD (2) 

Using this expression we can determine the number of theoretical plates, /I. in a tube 
of length L: 

II = L./II = 24 i-iDLJF (3) 

For long tubes where II > 30, the shape of the eluted peak is very close to 
gaussian, and its variance, c?, is the familiar 

CT’ = V$/ll (4) 

where VT is the volume of the tube, and the standard deviation is expressed in units of 
volume. 

Ref. 4 shows that as II decreases below about 30, the eluted peak becomes 



100 J. G. ATWOOD, M. J. E. GOLAY 

increasingly non-gaussian and the assumptions under which eqn. 4 is derived become 
less and less true. It is then necessary to compute the shape of the eluted peak from 
a numerical computer model. 

It is sufficient for typical LC systems to compute the eluted peak shape for each 
tube length at only one flow-rate. Referring to Figs. 6 and 8 of ref. 4, and noting that 

UFO;;,, = v~/v,~~ (where v0 and ~~~~~ are the average flow velocity and the optimum flow 
velocity, respectively) it is clear that the variance and skewness of the sample distri- 
bution inside the tube are almost independent of flow-rate when F/F,,, 2 30, even 
when the average flow has traveled only 0.015 theoretical plates. This is the earliest 
event observable in this computer model. It is a single iteration. Thus, it is justifiable 
to use peak shapes calculated for F/F,,, = 100 as reasonably representative for all 
flow-rates such that F/F,,, , > 30, the range of interest for short tubes in LC systems. 

THE NUMERICAL COMPUTER MODEL 

The model used to calculate the peak shapes is described in detail in ref. 4. 
Briefly. it divides the tube into volume elements consisting of 10 concentric rings at 
equal increments of radius and slices at equal increments of length along the tube. 
Poiseuille flow is simulated by advancing the sample in each volume element along the 
tube according to the velocity at that radius. Diffusion is simulated by redistributing 
part of the sample in each volume element to the elements adjacent to it. One cycle of 
simulated flow followed by simulated diffusion is defined as one iteration and cor- 
responds to the time unit in the model. Sample injection is simulated by starting with 
an initial sample in all the rings of the first slice of the tube. Thousands of iterations 
over tens of thousands of volume elements simulate the combination of Poiseuille 
flow with diffusion which disperses the sample in the tube. The model can be asked to 
describe the distribution of sample along the tube after a certain time, or the sample 
content in all the rings of a certain slice as a function of time, or the rate of elution of 
sample from a tube of a certaih length as a function of time. 

After a sufficient number of iterations, the sample is smoothly distributed over 
a large number of volume elements, and the model can be expected to simulate the 
physical process with very great accuracy. However, it can be seen by referring to Fig. 
5 of ref. 4 that for F/F,,, = 100, it takes only 3 iterations for the sample to reach the 
end of a tube 0.1 plates long, and the computed distribution of sample still sho;vs 
substantial effects from the discreteness of the model. 

Therefore, to study peak shapes eluted from tubes as short as 0.01 theoretical 
plate, it was necessary to modify the computer model to give it a finer grid in space 
and time. This was done by changin, a the number rings into which the tube was 
subdivided from 20 to 50. This raised the iterations per theoretical plate from 66.67 to 
416.67. In the 50-ring model, the sample reaches the end of a tube 0.01 plates long at 
the second iteration. 

Both models become increasingly accurate after several iterations because the 
width of the features being measured becomes larger than a few slices. These con- 
ditions, however, do not apply for the initial onset and rapid drop at the start of peaks 
where IZ < 0.3 plates. The accuracy of computer-calculated properties such as width 
at half height and retention volume at the peak maximum are thus visibly affected by 
the coarseness of the grid of the models. Fortunately, for these limiting cases. reliable 
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simple theory of dispersion by Poiseuille flow without diffusion indicates the correct 
limiting values. 

In this work, data for normalized tube lengths of 0.3-30 plates were calculated 
using the 20-ring model of ref. 5. For normalized tube lengths from 0.1 to 0.0 1 plates 
the 50-ring model described above was used. For a normalized tube length of 0.1 
plate, the two models agreed as to standard deviation of the eluted peak to within 
1.57;. This small discrepancy is believed to be caused in part by the fact that at 0.1 
plate, the ‘O-ring model’s accuracy is slightly affected by having an insufficient 
number of iterations at the onset of the peak to average out the discreteness of the 
model. 

The calculated peak shapes were processed by another program which de- 
termined the location of the peak maximum, the location of the centroid, the stan- 
dard deviation. and the minimum width containing 95 “/;: of the peak’s area. Since this 
program was designed to process relatively noisy experimental data, its accuracy in 
calculating standard deviation of the computed peaks is estimated to be about 0.5 s{,_ 

COMPUTED RESULTS 

Ehtrion peak shapes 

Elution is the average concentration of sample in the fluid leaving the end of a 
tube as a function of time, after a very narrow injection uniformly across the entrance 
to the tube. It is the signal that would be seen by a detector with very small volume 
that mixes together the fluid from all parts of the end of the tube and responds to the 

instantaneous concentration that results. 
Fig. 1 shows the peak shapes eluted from tubes from 0.01 to 30 plates in length. 

, 7 ,I / I’ / 

1 ’ / /. / / 
, 

VI/ / 7,’ .’ / / 
0 1.0 u) 3.0 

NORMALIZED ELUTED VOLUME V/VT 

n=30 

A 

Fig. 1. Elution peak shapes as a functton of normalized tube length. )r. m plates. Eluted sample concentm- 
tlons from numerical computer model are normalized to represent Injections of I small. constant sample 
mass into tubes of constant volume VT and plotted ILXWJ normalized eluted volume I/ I ;. When II c 0.3 
plates. the true peak shape has an almost instantaneous onset and peak maximum at Ii 1; = 0.5. Sloping 
onsets and angularity of the computed curves for these values of ,I are caused by coarseness of the model 
for very early events. Transition from the short-tube peak shape to gaussian peaks for long tubes as II 
increases can be seen to occur by the development of a hump which makes in from the tail to a normalized 
retention volume of 1.0. \\here it grows and narrows to become the main peak. 
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Sample concentration in arbitrary units is plotted VU-SLIS normalized eluted volume, 
V/V,, where V is the volume eluted since the time of injection. Each peak computed 
by the model is normalized by dividing its abscissa scale by the length of the tube in 
theoretical plates. Thus, each curve represents elution from a tube of unit volume. 
Each ordinate scale is adjusted so that all curves have the same area. Thus the curves 
simulate an experiment in which a sample of fixed mass and very small volume is 
injected into a tube of fixed volume whose length in theoretical plates is varied by 
changing the flow-rate or sample diffusivity. 

When JZ -G 0.3, the Poiseuille velocity profile should result in each peak having 
a very abrupt onset at V/V- = OS, followed by a hyperbolic decay proportional to 
( V/VT)-2 in the early stages. The results show this only approximately_ The sloping 
onset for the shortest tubes is attributable to the aforementioned coarseness of the 
model grid for the earliest stages of dispersion. 

As shown in ref. 4, the hyperbolic tail of each peak is truncated by combined 
radial diffusion and velocity shear. This sweeps the sample at the walls ahead as a 
“hump” of concentration which accelerates until it catches up with the average flow 
in the tube. This hump can be seen in the curves of Fig. 1 moving in from near V/VT 
= 8 when JZ = 0.01 toward V/V, = 2 at JZ = 0.3. Finally, for JZ 2 3, the hump 
becomes the main peak at V/VT = 1.0. The onset peak at V/V, = 0.5 finally disap- 
pears at JZ = 30 as diffusion destroys the sharp front on the axis of the tube and the 
eluted peak approaches a gaussian shape. For II > 30 the longitudinal sample distri- 
butions at all radii in the tube are close to being gaussian, with the distribution on axis 
leading the distribution at the wall by 3 theoretical plates, and the eluted peaks are 
very close to gaussian. 

Table I gives quantitative data on the persistence of the tails on elution peaks 
from short tubes. The first four columns give the number of tube volumes that must 
be eluted before the concentration drops below 10, 1 and 0.1% of its peak value, as a 
function of normalized tube length, JZ. 

TABLE I 

LENGTHS OF TAILS OF ELUTION AND SLICE CONTENT PEAKS IN TERMS OF NORMAL- 
IZED ELUTED VOLUMES, V/V, TO ATTAIN CONCENTRATIONS LESS THAN 10,I AND 0.1% 
OF PEAK CONCENTRATION 

Nortmlixd 
tube lengrh, 
plates 

Elurion peaks Slice content peaks 

VI V,jor rhese percenrs of Vf V,_for Zltese percertrs 
peak concentration: of peak concenZration.- 

10 I 0.1 10 I 0.1 

0.01 
0.03 
0.10 
0.30 
1.0 
3.0 

10 
30 

2.1 8.6 15.4 
1.9 7.5 10.9 
1.7 5.8 7.5 
2.3 4.6 -* 

2.4 3.4 - 

2.1 2.7 

1.7 
1.4 

9.4 22.6 
11.1 
7.5 8.8 

35:; 

-* 
- 

2.9 - 

2.3 
1.6 

* Data not from peaks computed 20-ring model. 
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I’XMALIZE~ TUBE I&H. FUXIES 
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Fig. 2. Elution bandwidth wrsus tube length on log-log scales. Normalized standard deviation ojr'; ~er.w.\ 
normalized tube len_gth 1~ in plates for the peak eluted from a straight open tube. Solid dots are values from 
the numerical computer model. The solid line is from eqn. 5. Open circles are means of measurements on a 
straight stainless-steel tube (366 cm x 0.41 mm I.D.) where flow-rate was varied from 4.1 to 0.105 ml/min 
lo vary the normalized tube length. Sample was sodium benzoate in water at room temperature. Broken 
line shows extension of n- ‘,’ asymptote which applies for N > 30. 

Ehrtiou ba~~ch~icltl~ 
Fig. 2 shows a log-log plot of the normalized standard deviation, G/V=, of 

eluted peaks VS. tube length in plates. It shows that for II > 3 plates. o/V, is as- 
ymptotic to II- 1;2, in expected agreement with the theory for long tubes. For iz -C 3 
plates. a/ 1’; has a continually decreasing slope indicating that it is approsimately 
proportional to N -lli4 It can be seen that when 11 -=z 10, significant errors in calcu- _ 
lation of G result if the long-tube formula is used. 

Table II gives some properties of the computed peak shapes for 13 different 
normalized tube lengths. The second column gives the normalized standard devi- 
ation. G/ VT_ An empirical espression was found that closely approximates these com- 
puted values down to II = 0.01 plates. It is 

tii v, Z 11 --l’? (1 + 3/?2)_“5, II > 0.01 (5) 

The third column of Table II gives the ratio of this approximate expression to the 
computed G/V=. It shows that the maximum error of the approximation is 3.5 1:,,. 
Thus, for many purposes, eqn. 5 has adequate accuracy within its range down to II = 

0.01. The empirical character of this equation must be emphasized: theoretical con- 
siderations indicate that for indefinitely decreasing values of II, G/V.~ approaches a 
constant times II - l16. 

To measure the true G of non-gaussian peaks in experimental work involves 
substantial computation. Therefore it is of interest to see how the commonly used 
simpler methods of estimating G perform for the particular non-gaussian shapes 
which occur for II = 30. One such measure is width at half height, CVl12, which equals 
2.355 c for a gaussian peak. The fourth column of Table II gives the ratio W,,J2.355 
6. A similar measure also used is width at 0.6067 of peak height, CV,_, which equals 2~ 
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NORMALIZED TUBE LENFM. PLATES 

Fig. 3. Accuracy of commonly used measures of bandwidth in determining the standard de\ iatton of peaks 
eluted from a straight tube. W,, is bandwidth containing 95.46 X of peak area. W’0.5 and We b are widths at 
half and 0.606 of maximum height. respectively. Each measure is divided by its value in terms of the 
standard deviation, (T. for a gaussian peak. These ratios are plotted rersr~ normalized tube length on a log 

scale. Values are from the numerical computer model. 

for a gaussian peak. The fifth column gives Wo_,/2a. A third measure is “base width”. 
Et/,,. the minimum width containing 0.9546 of the peak area. Though harder to 
measure than IV,,, and W,,6, it is easier to measure than true t, especially when the 
peak is recorded on a system which can integrate peak area. It equals 40 for a 
gaussian peak. The sixth column gives W’~/,,/~G. Fig. 3 shows these three ratios plotted 
IX. tube length in plates. 

These results show that Wllz and W,., give reasonable values down to iz = 10 
plates. but for shorter tubes become an extremely unreliable measure of G. Below 0.3 
plates, when the early part of the peak has adopted its sharp onset and hyperbolic 
decay, both measures again assume a fixed ratio with the true G. 

For II = 0.1 plates. these ratios are 

CV,5 varies much less with II than the others. For )z S 0.3 plates, 

and for 11 < 4 plates, eqn. 8 iS Still XCUratC to 3 7;. 

Peak ioccttiott mtd cetttt-oici 
It is common to estimate the “dead” volume of a tube or column by measuring 
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I 
OS1 

1 I I I 
0.1 LO lo 100 

NORIIMUZ~ TUBE LENGTH, PLATES 

Fig. 4. Retention volume of the centroid V, and the maximum V, of elution peaks from the numerical 
computer model of a straight tube versus tube length. Normalized retention volumes V,/Vr and V,/Vr are 
plotted rersns normalized tube length, II, in plates on a log scale. Above 10 plates. both curves are 
asymptotic to 1.0. For lower plates. the centroid becomes increasingly delayed owing to the tail caused by 
slow moving sample near the wall. The peak has two maxima between about 3 to 10 plates. For shorter 
tubes the correct theoretical maximum is extremely close to the onset at V/V, = 0.5. Values above 0.5 for 
0.01 < II < 0.1 plates show errors caused by the coarseness of the model for early events. 

the delay between injection into it and elution of a peak from it at a known flow-rate. 
This method implies an assumption that there has been sufficient velocity averaging 
so that the injected peak has traveled at the average flow-rate in the tube. In straight 
open tubes where II < 30 plates, this condition is not true. Fig. 4 is a plot of the 
normalized retention volumes of the eluted peak’s maximum I’,/ Vr and its centroid, 
VJ VT as a function of tube length in plates. Data for the centroid are in the seventh 
column of Table II. 

Above a length of 10 plates, the eluted peak has a single maximum near V,. 
Between 10 and 3 plates, the peak has two maxima, one near Vr and one near V,j2. 
Below 3 plates, the location of the maximum approaches VT/2 very closely, as ex- 
pected by the simple theory. That the computed values of V, below 0.1 plates lie 
slightly above V/VT = 0.5 can be ascribed entirely to the aforementioned coarseness 
of the model for the very earliest events. 

The centroid on the other hand, is predominately determined by the center and 
long tail of the peak, which are more accurately computed than the peak maximum. 
even for the shortest tube. Fig. 4 shows that for II < 10, the centroid of the eluted 
peak becomes delayed to far beyond V/VT = 1. For a tube 0.01 plates long, a large 
error will be made by estimating its volume to be equal to the retention volume of the 
eluted peak. The estimate will be a factor of 2 low if the peak maximum is used, and a 
factor of 2 high if the centroid is used as the measure of retention. 

Slice content peaks 
Some detectors respond to the total sample content of a slice across the tube, 

regardless of the radial location or longitudinal velocity of the sample within the slice. 
An example is a fluorescence detector whose beam crosses a transparent segment of 
the tube, and responds to concentration of the sample. 

Fig. 5 shows the peak shapes seen by detectors that respond to slice content in 
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Fig. 5. Slice content peak shapes as a function of normalized tube length. II. in plates. Computed average 
sample concentration in the last slide of the tube is plotted versus normalized retention volume. Normaliz+ 
tions are the same 2s for the ehttion peaks of Fig. 1. Slice content peaks are broader and show a more 
pronounced development of the transition hump than the corresponding elutton peaks because relattvely 
grcatcr acight is gtven to the slowly moving sample near the tube wall where the hump develops. 

the slice at the end of the tube for tubes from 0.01 to 30 plates in length. The abscissa 
scales are normalized in the same way as for the elution curves of Fig. 1 to represent 
tubes of constant volume. The ordinate scales are set to simulate the same mass of 
sample injection for all peaks. 

Just as for elution curves, the slice content curves for II -C 3 plates should all 

rise abruptly to a peak at V/V, = 0.5. But unlike elution curves. they should then 
decline with a hyperbolic form (V/VT)-’ until the passage of the hump. Escept for 

, 
0.1 I.0 lo 100 1, 

NORMALIZED TUBE LENGTH. PLATES 

Fig. 6. Slice content bandwidth MCSUS tube length on log-log scales. Normalized standard deviation o/ t’r 
rersus normalized tube length II in plates for the peak seen by a slice content detector at the output end of 
the tube. Solid dots are values from the numerical computer model. Broken line shows extension of u”* 
asymptote which applies for II > 30. 
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sloped onsets for the shortest tubes, the computed curves show this form. Their tails 
are higher and longer than the ( V/VT)-2 tails of the elution curves. In slice content 
peaks, sample near the wall is weighted equally with sample near the axis of the tube. 
in spite of its slower velocity. Since the sample hump that terminates the tail is largely 
at the wall in the-early stages, its passage in slice content peaks is much more pro- 
nounced than in the corresponding elution peaks. Table I shows that the persistence 
of slice content peaks is always greater than for elution peaks for the same tube, and 
much greater for very short tubes. 

Fig. 6 shows plots of normalized standard deviation G/ VT venrrs tube length in 
plates. As for elution, the normalized standard deviation of slice content peaks is also 

asymptotic to )z- ‘I2 for large n, blut is approximately proportional to K”*38 for 0.01 
< II -c 0.3 plates. 

Tabie III gives computed values for cr/ VT,, WI&!.355 G, CVo&G, bV9~/& and 
VJV,. These results show that for slice content peaks, W,,, and Woe, are also poor 
measures of bandwidth, while W,, bears nearly the same ratio to true G as it does for 
elution peaks. For slice content peaks, the centroid is delayed more than twice as 
much as for elution peaks. 

An approximate empirical formula for a/ VT for slice content peaks is 

G/VT z I1 - II2 (1 + s/n)- 1’7, II 2 0.01 (9) 

Over the range II 2 0.01 it agrees with computed results to within 4.1x, as shown in 
Table III. As for eqn. 5 eqn. 9 is completely empirical, and there is no justification for 
extending it to values of tz below 0.01. 

If a tube is not perfectly straight, smooth. and of uniform cross section, then at 
high flow-rates, an inertial flow may develop in it. This may cause radial mixing in 
addition to that caused by diffusion alone. If this additional radial mixing is signifi- 
cant compared to that caused by diffusion, then the straight tube theory will not 
apply. In LC systems this occurs while the Reynolds number is still too small for true 
turbulence, and both the main and secondary flows are laminar. 

Since the radial mixing effect of inertial flow generally increases rapidly with 
increasing Bow-rate, while the mixing effect of diffusion alone does not. we can expect 
there to be a transition flow-rate, F,,,,, at which the inertial mixing effect becomes 
significant compared to diffusion_ 

When the tube is coiled into a helicoidal path. the centrifugal force on the faster 
flowing fluid on the tube’s axis causes it to drift radially outward from the center of 
the curved path. This gives rise to a secondary flow superposed on the Poiseuille flow 
which divides it into two kidney-shaped counter-rotating circulations in the plane 
normal to the tube-s axis. Under these conditions, the secondary flow will cause a 
decrease in the plate height, and at the transition flow-rate, the fractional plate height 
reduction will be proportional to the fourth power of the main tlow-rate, as de- 
termined by Golay6. Using his eqn. 35 for the diffusion constant, k: 

k = D + g (1 - 18.430’) (10) 
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this fractional decrease is given by his term 18.430’, wherein, from his eqn. 23 (T 
designates the dimensionless quantity 

(11) 

where ri is the radius of its helicoidal path, p is the mobile phase’s viscosity and e its 
density. Defining the transition point as that at which c has the value 0.1, for which 
we would have an 18 y0 decrease in plate height, we derive the transition flow-rate as 

F ICl”b = (518 I-~~,,D~/Q)“~ (12) 

The same relationship can be derived from Tijssen’ (Table I. eqn. 1) by setting 
his D,/D, = I_ 1843 and solving for flow-rate. The coefficient resulting within the 
parentheses is 491, which is in substantial agreement with eqn. 12. 

It is worth noting that with any likely tube curvature in an LC system, the 
transition flow-rate, F,,,,,, will be much less than the flow-rate at which turbulence 
will occur which is for a Reynolds number of the order of 2000, i.e., for a flow-rate 
given by 

F lurb z 1000 Tcpf-Jg (13) 

Setting F,,,, = F,urb, we determine for rl: 

(14) 

For the dimensionless ratio p/eD, the lowest reasonable value in LC mobile 
phases is about lo’, so we obtain 

/-I z - ’ - 106 I’0 (15) 

Even for a very small tube with r. = 0.05 mm, the radius of curvature rr would 
be about 100 m. For all such tubes less straight than this, as flow-rate is increased, 
transition flow would occur at a lower flow-rate than turbulence. 

In the case of the continuously curved tube, the inertial mixing occurs un- 
iformly throughout the length of the tube, as does diffusion mixing. However, signifi- 
cant inertial mixing can also occur at single locations in a tube, such as sharp bends, 
step changes in diameter, or internal projections which partially block the cross 
section of the tube. 

The mixing effect of features such as these will also increase rapidly with the 
flow-rate so that when they are present, a transition flow-rate will exist beyond which 
experimentally determined plate heights may be markedly lower than predicted by the 
straight tube theory. 
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EXPERIMENTAL AND RESULTS 

Measurements on a straight tube 
The peak shapes and bandwidths eluted from a straight tube of fixed length 

were measured over a wide range of flow-rates. In this way the normalized length of 
the tube was varied by varying the flow-rate only. 

A 366 cm x l/16 in. 0-D. x 0.38 mm (0.015 in.) I.D. stainless-steel tube was 
fastened to a groove in a long wood beam so that it was maintained straight within 
about 5 mm over its entire length. Samples were injected into the tube using a 
Rheodyne Model 7120 valve with an injection loop modified to deliver 6 /cl. and 
connected to the straight tube with about 10 cm of 0.18 mm I.D. tube and an SSI 
(State College, PA, U.S.A.) low dead-volume union. The peaks eluted from the tube 
were measured by a specially made 3 x 1 mm I.D. UV flow cell. with a volume of 
about 2.6 ~1, connected to the straight tube by about 25 cm of 0.18 mm tube and 2 SSI 
unions. The cell was mounted in a Perkin-Elmer Model LC-55 UV detector set at 254 
nm. Output peaks were recorded on a strip chart recorder. The mobile phase was 
deionized water pumped by a Perkin-Elmer Series 2 pump. Flow-rates were measured 
by timing collection of ellluent in a graduated cylinder. The samples injected were 0.1 
or 0.2 “/b sodium benzoate in water. At each of 11 flow-rates, from 0.105 to 4.16 
ml/min, at least two injections were recorded. Recorded peaks were digitized on a 
Bendix Datagrid (Fairfield, CT, U.S.A.) and processed to obtain bandwidth 
measures by the same program used to process peaks generated by the computer 
mode! described above. 

The length of the tube was chosen so that at the three lowest flow-rates used. 
0.105, 0.2 1 and 0.31 ml/min, its normalized length was over 30 plates, and the eluted 
peaks were nearly gaussian. This made it possible to measure the tube volume ac- 
curately by measuring the retention volume k’, of the centroid of the eluted peak. 
Also it permitted a determination of the actual sample diffusivity by measuring the 
peak spreading in the tube under conditions where the long tube theory of eqns. 3 and 
4 applied. Knowledge of the diffusivity was necessary to determine II. the normalized 
tube length in plates, at higher flow-rates where TV cannot determined directly from the 
peaks themselves because of their extreme departure from gaussian shape. 

First, the instrumenta! contribution to retention volume, vi, and standard 
deviation pi were determined by replacing the 366-cm tube with a short segment of 
0.18 mm I.D. tube having negligible volume contribution. and recording the output 
peaks at the same flow-rates. At the three lowest flow-rates, the instrumental reten- 
tion volume v, varied little and averaged 43 ~1. With the 366-cm tube in place. the 
average diIference between the total retention volume V, and the instrumental reten- 
tion volume I’, measured at the three lowest flow-rates gave a value of tube volume I’r 
of 485 ~1. This corresponds to an inside diameter of 0.41 mm. 8 “/L above the nominal 
for the tube. This value for Vr was used in normalizing all measurements on the 366- 
cm tube. 

To determine sample diffusivity. two measurements of G corrected for instru- 
mental contribution G, were made at each of the three lowest how-rates used. From 
each of these G measurements, a plate height, II, in the tube was calculated. using eqn. 
4 to calculate N in eqn. 3. The results are shown in Table IV. 

From eqn. 2. under conditions where the long tube theory applies, and S is the 
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TABLE IV 

MEASURED PLATE HEIGHT YS. FLOW-RATE FOR 366-cm STRAIGHT TUBE 

Sample was 0. I y0 sodium be.nzoate in water at 14’C. These data were used to determine the diffusivity of 
sodium benzoate to be 8.1- lo-’ cm’/sec. 

0.105 4.3 3.3 
0.21 7.6 6.1 
0.31 7.1 7.7 

slope of the straight line which passes through the origin and relates plate height to 
flow-rate: 

D = 1124 Tis (16) 

A least squares best fit straight line passing through the origin was fitted to the 
data of Table IV and its slope was determined. From eqn. 16, D was found to be 
8.1 - 10F6 cm’jsec. This value of diffusivity was used in analyzing all experiments with 
sodium benzoate sample in water mobile phase. As a check on its reasonableness. it 
may be compared with the value of 9 - 10m6 cm’/sec for toluene, a molecule of similar 
size. in water at 2O’C given by Bristow’. 

Using the measured value of D and eqn. 3,)~ was found for each flow-rate. The 
measured G at each flow-rate was normalized by the measured tube volume. Vr. The 
results are plotted on Fig. 2. to compare them with the values predicted by the 
computer model. 

The 366-cm tube described above was removed from its straight wooden sup- 
port and coiled into a circle of radius R = 56 cm. Eluted peaks were recorded at 6 
flovv-rates from 0.105 to 4.16 ml/min and their standard deviations were measured. 
Fig. 7 shows a plot of the normalized measured standard deviations KS. flow-rate. 
Also shown for comparison are the theoretical values for this tube calculated using 
the measured I’-,-. D and Fin eqn. 3 to obtain II, then using the approximate formula 
of eqn. 5 to calculate oi Vr 

It can be seen that at and below about 0.5 ml/min, the measured bandwidth 
agrees well with the straight tube theory, but above this flow-rate it becomes lower. At 
4 ml/min. it is half that predicted for a straight tube. The calculated transition flow- 
rate for this tube using eqn. 12 is F,,, = 0.38 ml/min. 

Fig. 8 shows comparison of the peak shapes at the same flow-rate for the 
straight tube and the same tube curved to 56 cm radius. The effect of curving the tube 
is to delay and slope the sharp onset of the typical short-tube peaks, truncate the tail 
and make the profile much more gaussian. Ref. 4 showed that in short tubes the sharp 
onset is caused by sample on the tube axis while the tail is from sample at the wall, so 
these changes in peak shape indicate that radial mixing has occurred. 
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variance used in the parallel experiment on the effect of unions on the bandwidth of 1 
m of tube reported in Table VII. In this parallel experiment, it was clearly shown that 
the sum of the measured variances of separate segments of tube joined by unions is 
less than the measured variance of the same segments when in one continuous piece. 
This is in agreement with the computer model’s results for short tubes. 

An explanation of the bandwidth-reducin, = effect of unions is as follows. A 
necessary condition for variances of successive components in a flow path to add is 
that the concentration of sample entering and leaving each component must be de- 
scribable by a single-valued function of time. This is not the case for short segments of 
open tube smoothly joined together to form a continuous piece. Sample injected on 
the axis of a short segment is eluted close to the axis. Sample injected near the wall is 
eluted much later, near the wall. Even in a very long straight tube, when a sample is 
injected uniformly and simultaneously over the entrance to the tube, it emerges at the 
end with the sample distribution on the axis leading the distribution at the wall by 3 
theoretical plates. Because of this, the variance of a segment which is connected as a 
continuation of the tube will be additive to the variance of the original tube only if the 
normalized length of the continuation is much greater than 3 plates. Then the spread 
of 3 plates between axis and wall as the sample enters the continuation will be neglig- 
ible compared to the spreading effect of the continuation segment itself. 

If the second segment is added not as a continuation of the first tube, but is 
coupled to it with a union, the union may act as a localized mixing feature which 
thoroughly mixes sample from the axis and the walls of the first segment of tube and 
redistributes it uniformly over the entrance to the following segment, without adding 
significant spreading of its own. Any such localized mixing component causes a 
transfer of sample from one segment to the next which is describable by a single- 
valued function of time. Therefore, variances of tube segments joined by such mixing 
components should add, no matter what the normalized length of the segments. 

The experimental results of Table VII show that the measured total variances 
of the tubes segmented by unions approximately equalled the sum of the variances of 
their separate segments. This is consistent with the assumption that at 0.5 ml/min, 
each union functioned as a localized mixing component. 

Within the errors of measurement, there was no evidence that the unions con- 
tributed variance that was significant compared to the variance contribution of a 25- 
cm segment of the tube. Since the nominal volume of the through hole in these unions 
was of the order of 0.2 ~1, this is a reasonable result. 

It is very likely that most of the radial mixing process in the union is inertial, 
caused by step changes in cross section or by misalignment. Hence there is probably a 
transition flow-rate below which the union becomes relatively ineffective as a mixing 
component. Therefore, one can speculate that in systems used with microbore col- 
umns with much lower flow-rates and instrumental bandwidth, the variance contri- 
bution of such unions may be higher, their mixing effectiveness lower, and their 
contribution to instrumental bandwidth no longer negligible. 

An ideal column end fitting should also function as a radial mixing component. 
At the input, it should mix sample from the axis and the wall of a small-bore connec- 
ting tube and distribute the resultant fluid uniformly and simultaneously across the 
top of the column without adding significant variance. At the output of the column, it 
should perform a corresponding transfer of sample mixture from axis and wall of the 
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column uniformly and simultaneously cross the entrance to the connecting tube. 
Ideal end fittings could have an important effect in joining together a set of 

packed columns that share a defect which permits samples to travel at a different ve- 
locity on asis than at the wall, especially if these columns are short compared to the 
length that permits radial dispersion to redistribute sample uniformly over the cross- 
section. The variances of the peaks eluted from these columns should add if they are 
coupled in series with ideal column fittings and short connecting tubes of negligible 
bandwidth contribution. But if the columns are coupled in series by removing the end 
fittings and butting their ends in drilled out unions. it can be espected, for the same 
reasons as for short open tubes, that their variances should not add, and that the 
variance of the combination should be greater than the sum of the variances 
measured on separate segments between column end fittings. Golay” proposed 
mixing devices similar to a pair of ideal end fittings, but internal to the column for 
large preparative gas chromatographic columns. 

When the diffusivity of an J-C sample in a particular mobile phase is not 
known, a convenient method to determine it is to use an LC instrument system to 
measure the spreading of the sample peak injected into a long straight tube between 
injection valve and detector. The method should be accurate if precautions are taken 
against mising effects other than diffusion, and the tube is long enough so that the 
long-tube theory applies. These conditions are assured if the measured plate height in 
the tube is accurately proportional to flow-rate over at least a 2 to 1 range of flow- 
rates. 

To achieve this the tube must be smooth and in a single piece. and straight 
enough so that F,,,,, calculated using eqn. 13 is substantially larger than the largest 
flow-rate at which measurements will be made. It must be long enough so that at the 
highest flow-rate and for the diffusivity being measured. its normalized length is 
greater than 30 plates. This will generally require physically separating the injection 
valve from the detector so that they can be cormected to the opposite ends of the long 
tube with short connections. Naturally. the eluted peaks from the tube should have 
variances at least an order of magnitude greater than that of the instrumental system 
alone. so that no significant error is caused by correcting for the instrumental volume 
and variance. This can be measured by replacing the long tube with a cery short tube 
of small diameter having negligible volume and variance contribution. 

The results presented in this paper do not apply directly to axially illuminated 
how cells such as are typical in Ultraviolet absorbance detectors. In these cells the 
sample is injected at one end of the cell and remains fully in the beam until it reaches 
the other end. The detector signal is thus neither an elution curve nor a slice content 
curve. Instead. it is the initial amount of sample injected into the tube minus the 
integral of the elution curve from a short tube of the same length and volume as the 
cell. Curves for axially illuminated cells and their moments can be derived from the 
results of the computer model reported here by additional data processing. These 
results will be reported in another paper. 
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