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CHROMATOGRAPHY SYSTEMS
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SUMMARY

The theory of spreading of a sample peak in a long straight open tube is
known. However, when the tube becomes shorter than 30 theoretical plates, the
eluted peak becomes non-gaussian and the theory for long tubes does not apply. This
is the case for connecting tubes. injection loops and detector flow cells in liquid
chromatographic (LC) systems. In earlier work, we studied the theory of this case
using a computer model combining Poiseuille flow with diffusion, obtaining unexpec-
ted results about how samples wash out of short tubes. This work extends that study
to obtain the peak shapes and bandwidths eluted from straight open tubes ranging
from 0.01 to 30 plates in length.

An empirical expression was found for peak width which fits the results of the
computer model to within 49, over this entire range. Below 3 plates, the normalized
peak width is approximated by a constant times the inverse fourth root of normalized
tube length in plates. It becomes as small as a quarter of the value predicted by the
long tube theory for 0.01 plates. Experimental measurements on short tubes agree
approximately with the computer model when diffusion is the only cause of radial
mixing. An expression was derived which determines whether a tube is sufficiently
straight so that secondary flow is unimportant compared with diffusion as a cause of
radial mixing. Measurements on curved tubes are consistent with the expression. The
conditions under which measurements of peak spreading in an open tube can be used
to obtain the diffusivity of an LC sample are discussed.

A consequence of these results is that LC systems can be designed with sub-
stantially less bandwidth contribution from extra-column components than would be
predicted using the long tube theory. Another consequence is that variances con-
tributed by consecutive segments of short open tubes are not additive unless there is
complete radial mixing at the connections between segments.

INTRODUCTION

The theory of dispersion of a sample peak injected into Poiseuille flow in a long
straight tube is well known from the works of Taylor! and Golay®. When the tube is
long there is ample time for radial diffusion to average each sample molecule’s for-
ward progress over the parabolic velocity distribution in the tube. The eluted peaks
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are gaussian in shape and the theory is in excellent agreement with experiments.

However, when the tube is short, or the diffusivity of the sample is low, or the
flow-rate is high enough so that there is insufficient time for velocity averaging, the
peak eluted from a small injection becomes markedly non-gaussian, and the theory
for long tubes does not apply. This typically occurs for the connecting tubes, injection
loops, and detector flow cells of liquid chromatography (LC) systems.

Gill and Ananthakrishnan?® solved the convective-diffusion equations in a short
tube and found that the peaks at the end of the tube may have double maximums.
Golay and Atwood* studied this early phase of dispersion of the sample using a
computer model combining diffusion and Poisseulle flow in an open tube with no
retention. It was found that for the conditions typically encountered in L.C systems,
the shape of the peak eluted from the tube as a function of time depended only on the
normalized length of the tube in theoretical piates, treating the tube as an open
tubular column with zero retention®. The bandwidth of the eluted peak was propor-
tional to tube volume, and when normalized by tube volume depended only on the
normalized tube length in plates. It was found, surprisingly, that the washing out of
the sample in the slowly moving layer near the tube wall occurred as a hump at the
rear of an otherwise rectangular distribution along the length of the tube. This hump
was shown by the computer model to cause a peculiar doubly curved shape in the
peaks eluted from tubes shorter than 30 theoretical plates. Computer-calculated
shapes of six peaks from tubes ranging from 30 down to 0.1 theoretical plates in
normalized length were published, but no analysis of their bandwidths or variances
was presented. Maycock et al.® solved the shape of peaks from tubes in the same
range of normalized lengths by an entirely different numerical method and obtained
results in general agreement.

This paper extends the earlier work as follows. Because some L.C components
such as detector flow cells may typically be as little as 0.01 theoretical plates in
normalized length, the computer model was revised so that the calculation could be
extended to tubes as short as this. Bandwidth and other properties of the peak shapes
were calculated, and the way these properties vary with normalized length of the tube
was studied. The purpose was to characterize these highly non-gaussian peaks so that
more accurate estimates could be made of the bandwidth contributions of the com-
ponents that produce them.

It was found that as the tube becomes longer than 3 plates, the normalized
peak bandwidth, expressed as standard deviation, o, divided by the tube volume, V;
becomes asymptotic to the inverse square root of normalized tube length as predicted
by the theory for long tubes!-2. But as the tube becomes shorter than 3 plates, the
normalized peak bandwidth becomes significantly smaller than predicted by the long
tube theory. At 0.01 plates it is only one fourth as large.

A consequence of this result is that it appears possible to design LC com-
ponents that make significantly less contribution to extra-column bandwidth than
would be predicted using the long tube theory only.

Another consequence of the result is that the variances contributed by con-
secutive segments of short open tubes are not additive unless there is complete radial
mixing at the connection between the segments.

Several experiments are described which tend to verify the correctness of the
computed results, yet show the limits of their applicability. The principal limitation is
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that in the theory for laminar flow in straight tubes, diffusion is the only cause of
radial mixing. Therefore, any experiments to be governed by such a theory must be
free of the radial mixing effects of secondary flow such as is caused by curved tubing
paths or abrupt changes in cross section. It was found necessary in the experiments to
keep tubes surprisingly straight to get results in agreement with the theory, except at
very low flow-rates. A simple expression was derived from the work of Golay® which
determines in advance whether a tube is sufficiently straight so that secondary flow is
unimportant compared with diffusion as a cause of radial mixing. Measurements of
peak dispersion made in a curved tube are consistent with this expression. Many
other predictions of the theory remain to be tested experimentally, however.

THEORY

A straight open tube can be treated as an open tubular column without reten-
tion?. It has an optimum velocity at which the height of a theoretical plate is min-
imum. Multiplying the expression for the optimum velocity by the area of the tube’s
cross-section gives the corresponding optimum flow-rate, F,,, as

Fopo = \/@ nDr, (1)

where D is diffusivity of the sample in the mobile phase and rg is the inside radius of the
tube. For a typical sample with D = 1073 cm?/sec in a tube with 0.009 cm radius. J
~ 2-107% cm?/sec, or roughly 10~* ml/min. Thus, the flow-rates in typical LC
systems are of the order of 1000 to 10,000 times the optimum flow-rates in the
connecting tubes. Even for detector cells with 0.025 cm radius, F,,, ~ 3-107*
ml/min, so that a flow-rate of 10 gl/min, as is typically used with microbore columns®
is about 30 times F;,,. Under these conditions, except for a brief instant at the start,
convection due to Poiseuille flow is always far more important than iongitudinal
diffusion as the cause of axial dispersion of the sample and we may use only the
dynamic diffusion term of the expression for plate height, /4, in the tube. Expressed in

terms of flow-rate, F, it is
h = F24 aD (2)

Using this expression we can determine the number of theoretical plates, 7. in a tube
of length L:

n=L/h =24 gDL|F (3)

For long tubes where # > 30, the shape of the eluted peak is very close to
gaussian, and its variance, g2, is the familiar

6> = Vi/n (4)
where V7 is the volume of the tube, and the standard deviation is expressed in units of

volume.
Ref. 4 shows that as » decreases below about 30, the eluted peak becomes
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increasingly non-gaussian and the assumptions under which eqn. 4 is derived become
less and less true. It is then necessary to compute the shape of the eluted peak from
a numerical computer model.

It is sufficient for typical LC systems to compute the eluted peak shape for each
tube length at only one flow-rate. Referring to Figs. 6 and 8 of ref. 4, and noting that
FJF,, = vo[vyy (Where v, and v, are the average flow velocity and the optimum flow
velocity, respectively) it is clear that the variance and skewness of the sample distri-
bution inside the tube are almost independent of flow-rate when F/F,, > 30, even
when the average flow has traveled only 0.015 theoretical plates. This is the earliest
event observable in this computer model. It is a single iteration. Thus, it is justifiable
to use peak shapes calculated for F/F,, = 100 as reasonably representative for all
flow-rates such that F/F,, > 30, the range of interest for short tubes in LC systems.

THE NUMERICAL COMPUTER MODEL

The model used to calculate the peak shapes is described in detail in ref. 4.
Briefly. it divides the tube into volume elements consisting of 20 concentric rings at
equal increments of radius and slices at equal increments of length along the tube.
Poiseuille flow is simulated by advancing the sample in each volume element along the
tube according to the velocity at that radius. Diffusion is simulated by redistributing
part of the sample in each volume element to the elements adjacent to it. One cycle of
simulated flow followed by simulated diffusion is defined as one iteration and cor-
responds to the time unit in the model. Sample injection is simulated by starting with
an initial sample in all the rings of the first slice of the tube. Thousands of iterations
over tens of thousands of volume elements simulate the combination of Poiseuille
flow with diffusion which disperses the sample in the tube. The model can be asked to
describe the distribution of sample along the tube after a certain time, or the sample
content in all the rings of a certain slice as a function of time, or the rate of elution of
sample from a tube of a certain length as a function of time.

After a sufficient number of iterations, the sample is smoothly distributed over
a large number of volume elements, and the model can be expected to simulate the
physical process with very great accuracy. However, it can be seen by referring to Fig.
5 of ref. 4 that for F/F,, = 100, it takes only 3 iterations for the sample to reach the
end of a tube 0.1 plates long, and the computed distribution of sample still shows
substantial effects from the discreteness of the model.

Therefore, to study peak shapes eluted from tubes as short as 0.01 theoretical
plate, it was necessary to modify the computer model to give it a finer grid in space
and time. This was done by changing the number rings into which the tube was
subdivided from 20 to 50. This raised the iterations per theoretical plate from 66.67 to
416.67. In the 50-ring model, the sample reaches the end of a tube 0.01 plates long at
the second iteration.

Both models become increasingly accurate after several iterations because the
width of the features being measured becomes larger than a few slices. These con-
ditions, however, do not apply for the initial onset and rapid drop at the start of peaks
where n < 0.3 plates. The accuracy of computer-calculated properties such as width
at half height and retention volume at the peak maximum are thus visibly affected by
the coarseness of the grid of the models. Fortunately, for these limiting cases. reliable
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simple theory of dispersion by Poiseuille flow without diffusion indicates the correct
limiting values.

In this work, data for normalized tube lengths of 0.3-30 plates were calculated
using the 20-ring model of ref. 5. For normalized tube lengths from 0.1 to 0.01 plates
the 50-ring model described above was used. For a normalized tube length of 0.1
plate, the two models agreed as to standard deviation of the eluted peak to within
1.59%;. This small discrepancy is believed to be caused in part by the fact that at 0.1
plate, the 20-ring model’s accuracy is slightly affected by having an insufficient
number of iterations at the onset of the peak to average out the discreteness of the
model.

The calculated peak shapes were processed by another program which de-
termined the location of the peak maximum, the location of the centroid, the stan-
dard deviation. and the minimum width containing 95 9 of the peak’s area. Since this
program was designed to process relatively noisy experimental data, its accuracy in
calculating standard deviation of the computed peaks is estimated to be about 0.5 %;.

COMPUTED RESULTS

Elution peak shapes .

Elution is the average concentration of sample in the fluid leaving the end of a
tube as a function of time, after a very narrow injection uniformly across the entrance
to the tube. It is the signal that would be seen by a detector with very small volume
that mixes together the fluid from all parts of the end of the tube and responds to the
instantaneous concentration that results.

Fig. 1 shows the peak shapes eluted from tubes from 0.01 to 30 plates in length.
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Fig. 1. Elution peak shapes as a function of normalized tube length. n. 1n plates. Eluted sample concentra-
tions {from numerical computer model are normalized to represent njections of a small. constant sample
mass into tubes of constant volume ¥} and plotted 1ersus normalized eluted volume ¥/ 1. Whenn < 0.3
plates. the true peak shape has an almost instantaneous onset and peak maximum at }71; = 0.5. Sloping
onsets and angularity of the computed curves for these values of n# are caused by coarseness of the model
for very early events. Transition from the short-tube peak shape to gaussian peaks for long tubes as n
increases can be seen to occur by the development of a hump which moves in from the tail to a normalized
retention volume of 1.0, where it grows and narrows to become the main peak.
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Sample concentration in arbitrary units is plotted versus normalized eluted volume,

V/ Vi, where V is the volume eluted since the time of injection. Each peak computed
by the model is normalized by dividing its abscissa scale by the length of the tube in
theoretical plates. Thus, each curve represents elution from a tube of unit volume.
Each ordinate scale is adjusted so that all curves have the same area. Thus the curves
simulate an experiment in which a sample of fixed mass and very small volume is
injected into a tube of fixed volume whose length in theoretical plates is varied by
changing the flow-rate or sample diffusivity.

When 1 < 0.3, the Poiseuille velocity profile should result in each peak having
a very abrupt onset at V/V; = 0.5, followed by a hyperbolic decay proportional to
(V/V1) ™2 in the ezrly stages. The results show this only approximately. The sloping
onset for the shortest tubes is attributable to the aforementioned coarseness of the
model grid for the earliest stages of dispersion.

As shown in ref. 4, the hyperbolic tail of each peak is truncated by combined
radial diffusion and velocity shear. This sweeps ihe sample at the walls ahead as a
~hump™ of concentration which accelerates until it catches up with the average flow
in the tube. This hump can be seen in the curves of Fig. 1 moving in from near V/¥V;
= 8 when n = 0.01 toward V/V; = 2 at # = 0.3. Finally, for n > 3, the hump
becomes the main peak at V/V; = 1.0. The onset peak at V/V; = 0.5 finally disap-
pears at n = 30 as diffusion destroys the sharp front on the axis of the tube and the
eluted peak approaches a gaussian shape. For n > 30 the longitudinal sample distri-
butions at all radii in the tube are close to being gaussian, with the distribution on axis
leading the distribution at the wall by 3 theoretical plates, and the eluted peaks are
very close to gaussian.

Table I gives quantitative data on the persistence of the tails on elution peaks
from short tubes. The first four columns give the number of tube volumes that must
be eluted before the concentration drops below 10, 1 and 0.1 9 of its peak value, as a
function of normalized tube length, ».

TABLE1

LENGTHS OF TAILS OF ELUTION AND SLICE CONTENT PEAKS IN TERMS OF NORMAL-
1IZED ELUTED VOLUMES, V/V; TO ATTAIN CONCENTRATIONS LESS THAN 10,1 AND 0.1%
OF PEAK CONCENTRATION

Normalized Elution peaks Slice content peaks
tube length,
plates V{V 1 for these percents of V/Vy for these percents
peak concentration: of peak concentration:
10 1 0.1 10 1 0.1
0.01 2.1 8.6 15.4 9.4 16.5 226
0.03 1.9 7.5 10.9 7.2 11.1 13.8
0.10 1.7 5.8 1.5 5.4 7.5 8.8
0.30 23 4.6 —% 42 5.5 —*
1.0 24 34 — 3.1 39 -
30 2.1 27 - 24 2.9 -
10 1.7 21 - 1.8 23 -
30 1.4 1.6 — 1.4 1.6 —

* Data not available from peaks computed with the 20-ring model.
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Fig. 2. Elution bandwidth versus tube length on log-log scales. Normalized standard deviation 6/ 1 versus
normalized tube length # in plates tor the peak eluted from a straight open tube. Solid dots are values from
the numerical computer model. The solid line is from eqn. 3. Open circles are means of measurements on a
straight stainless-steel tube (366 cm x 0.41 mm [.D.) where flow-rate was varied from 4.2 to 0.105 mi;min
to vary the normalized tube length. Sample was sodium benzoate in water at room temperature. Broken
line shows extension of n~ "2 asymptote which applies for n > 30.

Elution bandwidth

Fig. 2 shows a log-log plot of the normalized standard deviation, ¢/V;, of
eluted peaks vs. tube length in plates. It shows that for n > 3 plates. /¥ 1s as-
ymptotic to n~ 2, in expected agreement with the theory for long tubes. For n < 3
plates. 6/ V53 has a continually decreasing slope indicating that it is approximately
proportional to n~1*_ It can be seen that when n < 10. significant errors in calcu-
lation of ¢ result if the long-tube formula is used.

Table II gives some properties of the computed peak shapes for 13 different
normalized tube lengths. The second column gives the normalized standard devi-
ation. ¢/ Vy. An empirical expression was found that closely approximates these com-
puted values down to n = 0.01 plates. It is

oV = n”2 (1 + 3/m)~ V3, n = 0.01 3

The third column of Table 11 gives the ratio of this approximate expression to the
computed o/ V. It shows that the maximum error of the approximation is 3.8 ¢,,.
Thus, for many purposes, eqn. 35 has adequate accuracy within its range down ton =
0.01. The empirical character of this equation must be emphasized: theoretical con-
siderations indicate that for indefinitely decreasing values of n, g/ V' approaches a
constant times n~ /6,

To measure the true ¢ of non-gaussian peaks in experimental work involves
substantial computation. Therefore it is of interest to see how the commonly used
simpler methods of estimating ¢ perform for the particular non-gaussian shapes
which occur for # = 30. One such measure is width at half height, W, ,, which equals
2.335 ¢ for a gaussian peak. The fourth column of Table Il gives the ratio W, ,,/2.355
o. A similar measure also used is width at 0.6067 of peak height, W, ( which equals 26
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Fig. 3. Accuracy of commonly used measures of bandwidth in determining the standard deviation of peaks
eluted from a straight tube. ¥y is bandwidth containing 95.46 2; of peak area. I, s and W, ¢, are widths at
half and 0.606 of maximum height. respectively. Each measure is divided by its value in terms of the
standard deviation, . for a gaussian peak. These ratios are plotted 1ersus normalized tube lengih on a log
scale. Values are from the numerical computer model.

for a gaussian peak. The fifth column gives W ;/20. A third measure is “"base width™.
Wys. the minimum width containing 0.9546 of the peak area. Though harder to
measure than W, ,, and W, it is easier to measure than true o, especially when the
peak is recorded on a system which can integrate peak area. It equals 40 for a
caussian peak. The sixth column gives W, /4. Fig. 3 shows these three ratios plotted
vs. tube length in plates.

These results show that W, ,, and W, 4 give reasonable values down ton = 10
plates. but for shorter tubes become an extremely unreliable measure of 6. Below 0.3
plates, when the early part of the peak has adopted its sharp onset and hyperbolic
decay, both measures again assume a fixed ratio with the true o.

For n = 0.1 plates. these ratios are

W, ~ 6/12 (6)

and

Woe ~ o/l4 (7)

W,5 varies much less with n than the others. For n < 0.3 plates,

Wss = 0.79 (8)
and for n € 4 plates, eqn. 8 is still accurate to 39,.

Peak location and centroid
It is common to estimate the “"dead’” volume of a tube or column by measuring
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Fig. 4. Retention volume of the centroid ¥, and the maximum V,, of elution peaks from the numerical
computer model of a straight tube versus tube length. Normalized retention volumes ¥V /Vy and V,/V; are
plotied versus normalized tube length, n, in plates on a log scale. Above 10 plates. both curves are
asymptotic to 1.0. For lower plates. the centroid becomes increasingly delayed owing to the tail caused by
slow moving sample near the wall. The peak has two maxima between about 3 to 10 plates. For shorter
tubes the correct theoretical maximum is extremely close to the onset at ¥/V = 0.5. Values above 0.5 for
0.01 < n < 0.1 plates show errors caused by the coarseness of the model for early events.

the delay between injection into it and elution of a peak from it at a known flow-rate.
This method implies an assumption that there has been sufficient velocity averaging
so that the injected peak has traveled at the average flow-rate in the tube. In straight
open tubes where n < 30 plates, this condition is not true. Fig. 4 is a plot of the
normalized retention volumes of the eluted peak’s maximum V_/V; and its centroid.
V_/Vy as a function of tube length in plates. Data for the centroid are in the seventh
column of Table II.

Above a length of 10 plates, the eluted peak has a single maximum near V.
Between 10 and 3 plates, the peak has two maxima, one near Vy and one near Vy/2.
Below 3 plates, the location of the maximum approaches Vy/2 very closely, as ex-
pected by the simple theory. That the computed values of V, below 0.1 plates lie
slightly above V/V; = 0.5 can be ascribed entirely to the aforementioned coarseness
of the model for the very earliest events.

The centroid on the other hand, is predominately determined by the center and
long tail of the peak, which are more accurately computed than the peak maximum.
even for the shortest tube. Fig. 4 shows that for n < 10, the centroid of the eluted
peak becomes delayed to far beyond V/V; = 1. For a tube 0.01 plaies long, a large
error will be made by estimating its volume to be equal to the retention volume of the
eluted peak. The estimate will be a factor of 2 low if the peak maximum is used, and a
factor of 2 high if the centroid is used as the measure of retention.

Slice content peaks

Some detectors respond to the total sample content of a slice across the tube,
regardless of the radial location or longitudinal velocity of the sample within the slice.
An example is a fluorescence detector whose beam crosses a transparent segment of
the tube, and responds to concentration of the sample.

Fig. 5 shows the peak shapes seen by detectors that respond to slice content in
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Fig. 5. Slice content peak shapes as a function of normalized tube length. a. in plates. Computed average
sample concentration in the last slide of the tube is plotted versus normalized retention volume. Normaliza-
tions are the same =5 for the clution peaks of Fig. 1. Slice content peaks are broader and show a more
pronounced development of the transition hump than the corresponding elution peaks because relauvely
greater weight is given to the slowly moving sample near the tube wall where the hump develops.

the slice at the end of the tube for tubes from 0.01 to 30 plates in length. The abscissa
scales are normalized in the same way as for the elution curves of Fig. 1 to represent
tubes of constant volume. The ordinate scales are set to simulate the same mass of
sample injection for all peaks.

Just as for elution curves, the slice content curves for n < 3 plates should all
rise abruptly to a peak at V/V; = 0.5. But unlike elution curves. they should then
decline with a hyperbolic form (¥/¥¢)~ ' until the passage of the hump. Except for

NORMALIZED BANDWIDTH

1 ] ] ] ]
Ja1] [+2]) 10 0 100 1000

NORMALIZED TUBE LENGTH, PLATES

Fig. 6. Slice content bandwidth versus tube length on log-log scales. Normalized standard deviation ¢/ V¢
versus normalized tube length n in plates for the peak seen by a slice content detector at the output end of
the tube. Solid dots are values from the numerical computer model. Broken line shows extension of n'/2
asymptote which applies for n > 30.
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sloped onsets for the shortest tubes, the computed curves show this form. Their tails
are higher and longer than the (V/¥}) 2 tails of the elution cuives. In slice content
peaks, sample near the wall is weighted equally with sample near the axis of the tube,
in spite of its slower velocity. Since the sample hump that terminates the tail is largely
at the wall in the-early stages, its passage in slice content peaks is much more pro-
nounced than in the corresponding elution peaks. Table I shows that the persistence
of slice content peaks is always greater than for elution peaks for the same tube, and
much greater for very short tubes.

Fig. 6 shows plots of normalized standard deviation ¢/ ¥V} versus tube length in
plates. As for elution, the normalized standard deviation of slice content peaks is also
asymptotic to n~ /2 for large n, but is approximately proportional to 7~ °-3% for 0.01
< n < 0.3 plates.

Tabie I1I gives computed values for 6/Vy,, W, ,,/2.355 6, Wy /26, Wy5/40 and
V./Vy. These results show that for slice content peaks, W,,, and W, ¢ are also poor
measures of bandwidth, while Wy bears nearly the same ratio to true ¢ as it does for
elution peaks. For slice content peaks, the centroid is delayed more than twice as
much as for elution peaks.

An approximate empirical formula for /¥ for slice content peaks is

G/Ve = n V2 (1 + 8/m)~ 17, n = 0.01 9)

Over the range n = 0.01 it agrees with computed results to within 4.1 %/, as shown in
Table II1. As for eqn. 5 eqn. 9 is completely empirical, and there is no justification for
extending it to values of »# below 0.01.

Curved tubes and inertial mixing

If a tube is not perfectly straight, smooth. and of uniform cross section, then at
high flow-rates, an inertial flow may develop in it. This may cause radial mixing in
addition to that caused by diffusion alone. If this additional radial mixing is signifi-
cant compared to that caused by diffusion, then the straight tube theory will not
apply. In LC systems this occurs while the Reynolds number is still too small for true
turbulence, and both the main and secondary flows are laminar.

Since the radial mixing effect of inertial flow generally increases rapidly with
increasing flow-rate, while the mixing effect of diffusion alone does not, we can expect
there to be a transition flow-rate, F, ., at which the inertial mixing effect becomes
significant compared to diffusion.

When the tube is coiled into a helicoidal path, the centrifugal force on the faster
flowing fluid on the tube’s axis causes it to drift radially outward from the center of
the curved path. This gives rise to a secondary flow superposed on the Poiseuille flow
which divides it into two kidney-shaped counter-rotating circulations in the plane
normal to the tube’s axis. Under these conditions, the secondary flow will cause a
decrease in the plate height, and at the transition flow-rate, the fractional plate height
reduction will be proportional to the fourth power of the main flow-rate, as de-
termined by Golay®. Using his egn. 35 for the diffusion constant, 4:

,2,..2
Voo

asp (1~ 18.4362) (10)

k=D +
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this fractional decrease is given by his term 18.4342, wherein, from his eqn. 23 ¢
designates the dimensionless quantity
Qvers oF®

® = 535 Dur, ~ 535 a?Durer, - ()

where r, is the radius of its helicoidal path, u is the mobile phase’s viscosity and g its
density. Defining the transition point as that at which ¢ has the value 0.1, for which
we would have an 18 9 decrease in plate height, we derive the transition flow-rate as

F,

trans

= (518 ryrDpjo)'? (12)

The same relationship can be derived from Tijssen’ (Table I, eqn. 1) by setting
his D /D, = 1.1843 and solving for flow-rate. The coefficient resulting within the
parentheses is 491, which is in substantial agreement with eqn. 12.

It is worth noting that with any likely tube curvature in an LC system, the
transition flow-rate, F,,, , will be much less than the flow-rate at which turbulence
will occur which is for a Reynolds number of the order of 2000, i.e., for a flow-rate
given by

Eurb =~ 1000 77:#’.0/9 (13)
Setting F,.,.. = F,,» We determine for r,:

) (1000 z)> [ ]

R T oD ro (14)

For the dimensionless ratio u/oD, the lowest reasonable value in L.C mobile
phases is about 102, so we obtain

ry = 2-10% 1, (15)

Even for a very small tube with r, = 0.05 mm, the radius of curvature r, would
be about 100 m. For all such tubes less straight than this, as flow-rate is increased,
transition flow would occur at a lower flow-rate than turbulence.

In the case of the continuously curved tube, the inertial mixing occurs un-
iformly throughout the length of the tube, as does diffusion mixing. However, signifi-
cant inertial mixing can also occur at single locations in a tube, such as sharp bends,
step changes in diameter, or internal! projections which partially block the cross
section of the tube.

The mixing effect of features such as these will also increase rapidly with the
flow-rate so that when they are present, a transition flow-rate will exist beyond which
experimentally determined plate heights may be markedly lower than predicted by the
straight tube theory.
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EXPERIMENTAL AND RESULTS

Measurements on a straight tube
The peak shapes and bandwidths eluted from a straight tube of fixed length

were measured over a wide range of flow-rates. In this way the normalized length of
the tube was varied by varying the flow-rate only.

A 366cm x 1/16in. O.D. x 0.38 mm (0.015 in.) I.D. stainless-steel tube was
fastened to a groove in a long wood beam so that it was maintained straight within
about 5 mm over its entire length. Samples were injected into the tube using a
Rheodyne Model 7120 valve with an injection loop modified to deliver 6 ul, and
connected to the straight tube with about 10 cm of 0.18 mm I[.D. tube and an SSI
(State College, PA, U.S.A.) low dead-volume union. The peaks eluted from the tube
were measured by a specially made 3 x 1 mm I.D. UV flow cell. with a volume of
about 2.6 ul, connected to the straight tube by about 25 ¢cm of 0.18 mm tube and 2 SSI
unions. The cell was mounted in a Perkin-Elmer Model L.C-55 UV detector set at 254
nm. Output peaks were recorded on a strip chart recorder. The mobile phase was
deionized water pumped by a Perkin-Elmer Series 2 pump. Flow-rates were measured
by timing collection of effluent in a graduated cylinder. The samples injected were 0.1
or 0.29; sodium benzoate in water. At each of 11 flow-rates, from 0.105 to 4.16
ml/min, at least two injections were recorded. Recorded peaks were digitized on a
Bendix Datagrid (Fairfield, CT, U.S.A.) and processed to obtain bandwidth
measures by the same program used to process peaks generated by the computer
model described above.

The length of the tube was chosen so that at the three lowest flow-rates used.
0.105, 0.21 and 0.31 ml/min, its normalized length was over 30 plates, and the eluted
peaks were nearly gaussian. This made it possible to measure the tube volume ac-
curately by measuring the retention volume ¥_ of the centroid of the eluted peak.
Also it permitted a determination of the actual sample diffusivity by measuring the
peak spreading in the tube under conditions where the long tube theory of eqns. 3 and
4 applied. Knowledge of the diffusivity was necessary to determine rn, the normalized
tube length in plates. at higher flow-rates where # cannot determined directly from the
peaks themselves because of their extreme departure from gaussian shape.

First, the instrumental! contribution to retention volume, ¥, and standard
deviation g, were determined by replacing the 366-cm tube with a short segment of
0.18 mm [.D. tube having negligible volume contribution. and recording the output
peaks at the same flow-rates. At the three lowest flow-rates, the instrumental reten-
tion volume F; varied little and averaged 42 ul. With the 366-cm tube in place. the
average difference between the total retention volume ¥V, and the instrumental reten-
tion volume V, measured at the three lowest flow-rates gave a value of tube volume V'
of 485 ul. This corresponds to an inside diameter of 0.41 mm. 8 ¢, above the nominal
for the tube. This value for V; was used in normalizing all measurements on the 366-
cm tube.

To determine sample diffusivity. two measurements of ¢ corrected for instru-
mental contribution ¢; were made at each of the three lowest flow-rates used. From
each of these ¢ measurements, a plate height, /, in the tube was calculated, using eqn.
4 to calculate #n in eqn. 3. The results are shown in Table IV.

From eqn. 2, under conditions where the long tube theory applies. and S is the
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TABLE IV
MEASURED PLATE HEIGHT ¥VS. FLOW-RATE FOR 366-cm STRAIGHT TUBE

Sample was 0.1 ¢ sodium benzoate in water at 24°C. These data were used to determine the diffusivity of
sodium benzoate to be 8.1-107% cm?/sec.

Flow-rate, F Plate height, It (cm)
(mifmin)
First run Second run
0.105 4.3 3.3
0.21 7.6 6.1
0.31 7.1 7.7

slope of the straight line which passes through the origin and relates plate height to
flow-rate:

D = 124 zS {16)

A least squares best fit straight line passing through the origin was fitted to the
data of Table IV and its slope was determined. From eqgn. 16, D was found to be
8.1- 107 % cm?/sec. This value of diffusivity was used in analyzing all experiments with
sodium benzoate sample in water mobile phase. As a check on its reasonableness, it
may be compared with the value of 9 - 107° cm?/sec for toluene, a molecule of similar
size. in water at 20°C given by Bristow®.

Using the measured value of D and eqn. 3, » was found for each flow-rate. The
measured ¢ at each flow-rate was normalized by the measured tube volume. V. The
results are plotted on Fig. 2, to compare them with the values predicted by the
computer model.

Measurement of transition flow in a curved tube

The 366-cm tube described above was removed from its straight wooden sup-
port and coiled into a circle of radius R = 56 cm. Eluted peaks were recorded at 6
flow-rates from 0.105 to 4.16 mi/min and their standard deviations were measured.
Fig. 7 shows a plot of the normalized measured standard deviations vs. flow-rate.
Also shown for comparison are the theoretical values for this tube calculated using
the measured V.. D and Fin eqn. 3 to obtain », then using the approximate formula
of eqn. 5 to calculate 6/ V7.

It can be seen that at and below about 0.5 ml/min, the measured bandwidih
agrees well with the straight tube theory, but above this flow-rate it becomes lower. At
4 ml/min. it is half that predicted for a straight tube. The calculated transition flow-
rate for this tube using eqn. 12 is F,,,, = 0.38 ml/min.

Fig. 8 shows comparison of the peak shapes at the same flow-rate for the
straight tube and the same tube curved to 56 cm radius. The effect of curving the tube
is to delay and slope the sharp onset of the typical short-tube peaks, truncate the tail
and make the profile much more gaussian. Ref. 4 showed that in short tubes the sharp
onset is caused by sample on the tube axis while the tail is from sample at the wall, so
these changes in peak shape indicate that radial mixing has occurred.
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Fig. 7. Bandwidth 1ersus flow-rate for a curved tube on log-log scales. Normalized bandwidth o/ ¥y versus
flow-rate for a tube 366 cm long with sodium benzoate sample in water mobile phase at room temperature.
Solid curve is calculated from eqn. 5 for the tube when straight. Broken line is extension of asymptote
applicable when # > 30. Circles are measurements made when the tube was curved into a circular path with
radius 56 cm. Arrow indicates the transition flow-rate above which theory for straight tubes does not
apply. calculated from eqn. 12.

In another experiment the 366-cm tube was folded into a “hairpin™ shape with
a 180 bend of 10 cm radius between two straight segments 167 cm long. In this shape.
the tube’s bandwidth obeyed straight tube theory up to a flow-rate of about 0.7
ml/min, but departed at higher flow-rates with bandwidth only 0.6 of that for the
straight tube at 2.08 ml/min.

Measurements on a fluorescence flow cell

To study the applicability of the computer model to very short tubes. measure-
ments were made on an experimental flow cell for a fluorescence LC detector. The
flow cell consisted of a cylindrical fused-silica tube (8 x 1.5 mm I.D.). At each end of

i A i 106 mt /min
4.2ml /min 21mt /min

Fig. 8. Effect of curved path on eluted peak shape. Measured peak shapes eluted from « stamnless-steel tube
(366 cm x 0.38 mm 1.D.) at three flow-rates. For upper curve of each pair (tharhked R = ). the tube was
straight. For lower curve, the same tube was coiled in a circular path of radius R = 56 cm. Sample was
sodiuin benzoate in water at room temperature. These peak shapes for the curved case are from among the
runs averaged to obtain the three corresponding expermmental points plotted in Fig. 7. Though the radius
of the curved path was about 1700 times the radius of the tube, curvature reduced the standard deviation of
the eluted peak more than a factor of 2 at 4.2 mI/min. Repeated curving and straightening of the same tube
showed that these peak shapes and bandwidth effects were quite reproducible.
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Fig. 9. Bandwidth of a fluorescence flow cell versus flow-rate. Measured bandwidth containing 95 9;, of the
peak area, W, is plotted versus flow-rate on log-log scales. The cell had 1.5 mm I.D. and was 8.5 mm
Iong. The excitation and fluorescence beams intersected at a focus 4.3 mm from the cell entrance. Sample
inlet was axially via a 0.38 mm diameter tube and a conical transition piece of 90° included angle. Cell
volume from inlet to beam focus was 7.5 ul. Sample was naphthalene in isopropanol. Calculated curve is
from eqn. 9 and assumed the cell acted as a slice content detector. Bandwidth lower than calculated at high
flow-rates may be evidence of inertial mixing at the junction of the inlet tube and cell entrance.

this silica tube, an entrance or exit tube of 0.38 mm 1.D. connected to it coaxially with
a conical transition piece of 90° included angle. The optical excitation and fluores-
cence beams crossed at the center of the cell. Their images were about 1.5 mm high
and 1.5 mm wide, effectively filling the cross-section of the cell.

The mobile phase was isopropanol. The sample was naphthalene at 0.5 to 2
pg/ml in isopropanol. The experimental fluorimeter was set for 280 nm excitation and
340 nm fluorescence with 10 nm spectral slit width in both beams. Pumps used were a
Perkin-Elmer Series 2 for flow-rates from 2 to 0.2 ml/min, and a specially modified
version of the same pump with smaller piston and stroke below 0.2 ml/min. A Valco
injection valve with 0.5-ul loop was connected to the detector with 10.5 cm of nominal
0.007 in. stainless-steel tubing and an SSI union. Measurements were made at 8§ flow-
rates from 0.0065 to 2.0 ml/min. Three to five injections were recorded at each flow-
rate on a Bascom Turner recorder. The integrating feature of the recorder was used to
determine W,;. the bandwidth containing 95.46 9] of the peak area. The resuits are
shown in Fig. 9.

The theoretical bandwidth of the detector was calculated as follows. The cell
was treated as a tube 1.5 mm in diameter with a uniform injection over its input end,
and a slice content detector 4.25 mm from the input. Its tube volume was calculated
to be 7.5 pyl. The diffusivity of naphthalene in isopropanol was estimated to be
4.1-107° cm?/sec by multiplying published values in methanol and benzene’ by the
ratios of the viscosities of those solvents to the viscosity of isopropanol. The norma-
lized length at each flow-rate was calculated using eqn. 3. It ranged from 1.21 plates at
0.0065 ml/min to 0.0039 plates at 2 ml/min. At 0.01, 0.1 and 1 ml/min, the o for the
cell was calculated using eqn. 9 for slice content detectors, and corrected for the error
of this expression by interpolation from column 3 of table III. Then W,5 was calcu-
lated by multiplying by the tabulated ratio Wys/46 from column 6. Similar calcu-
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lation of the elution bandwidth of the connecting tubes show that their contribution
should range from a W, of about 2 ul at 0.01 ml/min to about 4 gl at 1 ml/min even if
they were straight, which they were not. The contribution of the 0.5-ul injection value
was previously measured and found insignificant. Therefore their contributions were
ignored. The calculated results are plotted on Fig. 6 for comparison with the
measured values.

Measurements on tubes of varying length at fixed flow-rate

Four different straight lengths of a nominal 0.007 in. [.D. stainless-steel tube
were connected. between the injection valve and the detector of an LC instrument
system and the bandwidth contribution of the instrument and of each length of
tubing were determined.

The instrument consisted of a Perkin-Elmer Series 2 pump, a Valco injection
valve with 0.5-ul loop. a Perkin-Elmer Model L.C-75 UV detector with flow cell (3 x
1 mm [.D.) with a volume of about 2.6 pul, but slightly different design than that
described in the previous experiment.

First a 100-cm straight length of 0.007-in. tube was put in place, several injec-
tions were made, and the detector signal was recorded. Then. a 25-cm length was cut
from this tube, leaving 75 cm of the original tube. A new ferrule was mounted on it
and the 75-cm piece was reconnected in place and more injections were made. This
process was repeated leaving 50-. then 25-cm lengths of tubing in place. For each
length of tubing, three to five injections were recorded. The flow-rate was measured to
be 0.5 ml/min.

Data were processed as follows. First. the actual volume of each length of tube
was determined as shown in Table V. It was assumed that each 25-cm segment of tube
had the same unknown volume, V,s. and that the instrument alone contributed a
fixed volume with centroid ¥, in all the measurements. It was also assumed that the
centroid of the instrumental contribution ¥, and of the peak eluted frem each tube.
V., added to give the measured centroid in each experiment. The mean measured
centroid is given in the third column of Table V with 90 ¢, confidence limits calculated
from the measured standard deviations and Student’s ¢ factor!®.

From Fig. 4, the ratio of V', to I’y for each tube was determined. Using it. an
equation relating measured centroid, instrumental centroid, and tube volume was
written as shown in the fifth column of Table V. Three independent solutions from
the four equations gave mean values of 25.9 ul for V', and 7.56 ul for V,5. The volume
of each tube was taken to be the appropriate multiple of ¥,;. They correspond to an
inside diameter of 0.196 mm (0.0077 in.), 109, larger than nominal.

The mean variance measured for each tube length is shown in the fourth
column of Table VI, with 90 9] confidence limits calculated from the standard devi-
ation of the measurements and Student’s ¢ factor. It was assumed that each mean
variance was the sum of the fixed instrumental variance o> plus the variance of the
tube. Using the measured tube volumes and eqn. 5 the variance of each tube was
calculated as shown in the sixth column of Table VI. The instrumental variance was
determined as the single value which when added to the four calculated tube variances
gave the least squares best fit to the four measured mean variances. This instrumental
variance was 66.3 ul®. The difference between it and each measured total variance was
taken as the variance of each tube from measurements. This is compared in column 5
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TABLE VII
BANDWIDTH OF TUBES JOINED BY UNIONS

A total length of 100 cm of nominal 0.007-in. tube divided into segments joined by unions, and measured in a UV
instrument system with an estimated instrumental variance of 66.3 ui%. Sample was sodium benzoate in water mobile
phase at room temperature.

Length of tube Measured variance of Variance of joined tubes Standard deviation
segments joined Joined tubes plus of joined tubes
by unions (em) instrument, with 907, From Theoretical
confidence limits measurements from col. 6, From Theoretical
(ul?) (ul”) Table V (ul*)  measurements from col. 4,
- (ul) this table (ul)
100 164.8 + 26.2 98.5 104.7 9.9 10.2
75,25 1550 + 159 88.7 94.5 9.4 9.7
50, 25, 25 150.0 + 4.7 83.5 84.2 9.1 9.2
25, 25, 25, 25 1388 + 1.7 72.5 76.4 8.5 8.7

of Table VI. Standard deviations of the tubes from measurement and theory are the
square roots of these variances shown in columns seven and eight.

Measurements on coupled tubes

The effect of breaking a single straight tube into an assembly of shorter seg-
ments coupled with unions was studied as follows. During the performance of the
previously described experiment on tubes of varying length, after each 25-cm segment
was cut from the initially 100-cm tube, it was joined again to that tube with an SSI
union, together with all other 25-cm segments previously cut off, so that the overall
length was still 100 cm. Several injections were made and peaks were recorded. All
conditions were otherwise the same as in the previous experiment. This resulted in
measurements on 100 cm of tube in these four configurations: one piece, 100 cm; one
piece 75 cm, one piece 25 cm and one union; one piece 50 cm, two pieces 25 cm and two
unions; four pieces 25 cm and three unions. The means of variances measured on each
configuration, with 90 %} confidence limits are shown in the second column of Table
VII.

The variance of each tube configuration was determined by subtracting from
the mean totel variance the 66.3 ul? instrumental variance determined in the pre-
viously described experiment with tubes of varying length. The results are shown in
the third column of Table VII. In the fourth column the theoretical variance for each
configuration is given. It was calculated by adding the theoretical variances of the
appropriaté components previously calculated and given in the sixth column of Table
VI, and ignoring the contribution of the unions. For example, the theoretical variance
for the combination of 50-, 25- and 25-cm pieces is the sum of the calculated variance
for the 50-cm tube plus twice the calculated variance of the 25-cm tube from Table VI.
The corresponding standard deviations from measurement and theory are compared
in the fifth and sixth column of Table I.
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DISCUSSION

Applicability of the results for straight tubes

In the experiments on the 366-cm tube, its normalized length ranged from 126
down to about 3 plates. Though the predicted doubly curved peak shapes were
observed in the transition region near 10 plates, this is an insufficient range of # to
show conclusively that the experimental results agree with the results of the computer
model. However, the good agreement of the measurements on the fluorescence detec-
tor with the predictions for low flow-rates suggests that the results of the computer
model apply to very short tubes. Long tube theory applied to the fluorescence cell
would predict a minimum bandwidth contribution 2.5 times greater than observed at
0.1 ml/min.

We speculate that the measured bandwidths of the fluorescence cell which are
much lower than predicted at high flow-rates are caused by an inertial mixing effect at
the junction of the 0.38 mm diameter lead-in tube and the 1.5 mm diameter cell.
Rough calculations show that at 0.1 ml/min, the kinetic energy of the liquid leaving
the lead-in tube is more than adequate to sustain a toroidal secondary circulation in
the initial part of the cell. This circulation may extend 1 or 2 tube diameters into the
cell. Since the cell’s length from entrance to detector beam is less than 3 tube diam-
eters, such an inertial mixing process could be expected to substantially reduce its
bandwidth. Just as for other inertial mixing effects, it should exhibit a transition flow-
rate. If this is true, the experimental data suggest that the transition flow-rate is of the
order of 0.05 mil/min in this case.

Curved tubes

Measurements on the curved 366-cm tube confirm the applicability of the
transition flow eqn. 12. No effort was made in this work to study quantitatively the
bandwidth of curved tubes at higher than the transition flow-rate.

Significant findings are the surprising sensitivity of bandwidth of connecting
tubes to slight curvature, and that a single bend functions as a localized mixing
feature at flow-rates common in LC systems. These results mean that in practical LC
systems so much of the tubing is operated above its transition flow-rate that its
contribution to extira-column bandwidth is generally much less than straight tube
theory would predict, except at the very low flow-rates used with microbore col-
umns8.

Additivity of variances

A uniform tube can contribute a variance proportional to its length if and only
if the variance of any segment of the tube obeys eqn. 4, the long-tube case. In the
results of the computer model for short tubes where n < 30 the variance departs
increasingly from eqn. 4. Therefore, according to the model the variances of succes-
sive short segments of a tube do not add.

The results of the experiment with four tubes of different length reported in
Tables V and VI, are consistent with the results of the computer model, but they may
not be proof of the non-additivity of variances because, within the errors of the
assumptions and measurement, other interpretations may be possible. But this ex-
periment established reasonable values for the tube volumes and the instrumental
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variance used in the parallel experiment on the effect of unions on the bandwidth of 1
m of tube reported in Table VIL. In this parallel experiment, it was clearly shown that
the sum of the measured variances of separate segments of tube joined by unions is
less than the measured variance of the same segments when in one continuous piece.
This is in agreement with the computer model’s results for short tubes.

An explanation of the bandwidth-reducing effect of unions is as follows. A
necessary condition for variances of successive components in a flow path to add is
that the concentration of sample entering and leaving each component must be de-
scribable by a single-valued function of time. This is not the case for short segments of
open tube smoothly joined together to form a continuous piece. Sample injected on
the axis of a short segment is eluted close to the axis. Sample injected near the wall is
eluted much later, near the wall. Even in a very long straight tube, when a sample is
injected uniformly and simultaneously over the entrance to the tube, it emerges at the
end with the sample distribution on the axis leading the distribution at the wall by 3
theoretical plates. Because of this, the variance of a segment which is connected as a
continuation of the tube will be additive to the variance of the original tube only if the
normalized length of the continuation 1s much greater than 3 plates. Then the spread
of 3 plates between axis and wall as the sample enters the continuation will be neglig-
ible compared to the spreading effect of the continuation segment itself.

If the second segment is added not as a continuation of the first tube, but is
coupled to it with a union, the union may act as a localized mixing feature which
thoroughly mixes sample from the axis and the walls of the first segment of tube and
redistributes it uniformly over the entrance to the following segment, without adding
significant spreading of its own. Any such localized mixing component causes a
transfer of sample from one segment to the next which is describable by a single-
valued function of time. Therefore, variances of tube segments joined by such mixing
components should add, no matter what the normalized length of the segments.

The experimental results of Table VII show that the measured total variances
of the tubes segmented by unions approximately equalled the sum of the variances of
their separate segments. This is consistent with the assumption that at 0.5 ml/min,
each union functioned as a localized mixing component.

Within the errors of measurement, there was no evidence that the unions con-
tributed variance that was significant compared to the variance contribution of a 23-
cm segment of the tube. Since the nominal volume of the through hole in these unions
was of the order of 0.2 ul, this is a reasonable result.

It is very likely that most of the radial mixing process in the union is inertial,
caused by step changes in cross section or by misalignment. Hence there is probably a
transition flow-rate below which the union becomes relatively ineffective as a mixing
component. Therefore, one can speculate that in systems used with microbore col-
umns with much lower flow-rates and instrumental bandwidth, the variance contri-
bution of such unions may be higher, their mixing effectiveness lower, and their
contribution to instrumental bandwidth no longer negligible.

An ideal column end fitting should also function as a radial mixing component.
At the input, it should mix sample from the axis and the wall of a small-bore connec-
ting tube and distribute the resultant fluid uniformly and simultaneously across the
top of the column withcut adding significant variance. At the output of the column, it
should perform a corresponding transfer of sample mixture from axis and wall of the
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column uniformly and simultaneously cross the entrance to the connecting tube.

Ideal end fittings could have an important effect in joining together a set of
packed columns that share a defect which permits samples to travel at a different ve-
locity on axis than at the wall, especially if these columns are short compared to the
length that permits radial dispersion to redistribute sample uniformly over the cross-
section. The variances of the peaks eluted from these columns should add if they are
coupled in series with ideal column fittings and short connecting tubes of negligible
bandwidth contribution. But if the columns are coupled in series by removing the end
fittings and butting their ends in drilled out unions. it can be expected, for the same
reasons as for short open tubes, that their variances should not add, and that the
variance of the combination should be greater than the sum of the variances
measured on separate segments between column end fittings. Golay'' proposed
mixing devices similar to a pair of ideal end fittings, but internal to the column for
large preparative gas chromatographic columns.

Use of a long straight tube to determine diffusivities

When the diffusivity of an LC sample in a particular mobile phase is not
known, a convenient method to determine it is to use an LC instrument system to
measure the spreading of the sample peak injected into a long straight tube between
injection valve and detector. The method should be accurate if precautions are taken
against mixing effects other than diffusion, and the tube is long enough so that the
long-tube theory applies. These conditions are assured if the measured plate height in
the tube is accurately proportional to flow-rate over at least a 2 to 1 range of flow-
rates.

To achieve this the tube must be smooth and in a single piece. and straight
enough so that F,_,_ calculated using eqn. 12 is substantially larger than the largest
flow-rate at which measurements will be made. It must be long enough so that at the
highest flow-rate and for the diffusivity being measured. its normalized length is
greater than 30 plates. This will generally require physically separating the injection
valve from the detector so that they can be connected to the opposite ends of the long
tube with short connections. Naturally, the eluted peaks from the tube should have
variances at least an order of magnitude greater than that of the instrumental system
alone. so that no significant error is caused by correcting for the instrumental volume
and variance. This can be measured by replacing the long tube with a very short tube
of small diameter having negligible volume and variance contribution.

Axially illuminated absorbance flow cells

The results presented in this paper do not apply directly to axially illuminated
flow cells such as are typical in Ultraviolet absorbance detectors. In these cells the
sample is injected at one end of the cell and remains fully in the beam until it reaches
the other end. The detector signal is thus neither an elution curve nor a slice content
curve. Instead. it is the initial amount of sample injected into the tube minus the
integral of the elution curve from a short tube of the same length and volume as the
cell. Curves for axially illuminated cells and their moments can be derived from the
results of the computer model reported here by additional data processing. These
results will be reported in another paper.
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